Spirituality

Integration of Science and Spirituality

Imbalance or disharmony in any system, any action, generates problems of one kind or the other. Narrow-minded approach or lack of comprehensive considerations eventually leads to inadequate and problematic consequences, even though it might seem to offer some immediate success.
This is because of the incomplete comprehension or negligence of some of the crucial aspects of a situation. In order to achieve an orderly, well-organized, balanced and fulfilling human life, we need to pay due attention and give proper importance to the necessities of its interwoven physical, intellectual, mental and spiritual realms in the individual and social domains. A human being consists of a marvellous amalgam of matter and consciousness force.
The physical or the gross body is made up of the basic elements and their evolved reactions and results, so its healthy sustenance and vigorous functioning largely depend upon the balanced concentrations and activities of these vital constituents.
The subtle or the conscious body, mind and the inner self, which also lies at the base of the living existence of the physical body, receives the transmitting energy from enlightened thinking and virtuous sentiments. The vedic philosophy emphasizes the harmonious growth of both -the gross and the subtle realms. This comprehensive and integral approach lays the foundation of personal, familial, social and global development in an ideal way. Discrepancies, imbalances or disorder in any sphere of life causes different kinds of complications and difficulties of varied nature, which directly or indirectly hinder, retard and even reverse the graph of healthy soul growth and ascent.
A thorough understanding of human life becomes feasible by a comprehensive study of the interrelationship between the human mind, Nature and the Omnipresent Consciousness Force.
The major schools of thought and branches of knowledge that have emanated from the quest for fathoming this relationship have had entirely different approaches. While the material based modern science has designed sophisticated tools and technologies to shape the gross materialistic facets and external structure of progress, the inner foundation of this outer structure is embedded in the indwelling spirit in the individual and the collectively. Science contributes to the civilization and advancement of materialistic resources and spirituality holds the key to the harmonious and virtuous development of personality.
Science reveals the mysteries of Nature in the manifested world, while spirituality unfolds the secrets and objectives of its subtle existence. Analysis of the structure and perceivable properties of things is the subject matter of the different branches of material science. Decipheration and study of the origin and deepest purpose of life pertains to the fields of spirituality. Thus, broadly speaking, the former deals with answering “What and How?” and the latter with “Why and What for?” Both search for truth in their own fields of inquiry. Like the two banks of a river or two invisible edges of the horizon, both are perennially connected with each other but seem to stand far apart. Mutual cooperation and integration of the two is most desired for their relevance and necessity in human life. Unfortunately, these two gigantic streams of search for truth have, because of the way they have been followed and practiced, largely remained compartmentalized and mutually exclusive. Modern science has exhaustively excavated, extracted and exploited the natural resources and gained enormous mastery in the physical world.
However, for want of the guiding light of spirituality, it couldn’t really make a positively constructive, viable and righteous use of its mammoth wealth of knowledge of the principles underlying the physical phenomena. Matter and the visible world became the prominent foci of its advancement and so the objectives of life and its prime purpose got sidetracked and almost lost from sight. What was really needed was, to also search for solutions to the riddles of human psychology and the complexities that entangle the basic aims of life. Scientific research of the physical world enabled man to understand laws of the material world. But the infinite power of the inner self, the consciousness-force of pure sentiments of love and compassion, noble thoughts, etc remained unknown and ignored. As a result, materialistic civilization overtook the charge of life and the key role of sublime consciousness and associated faculties got neglected in the mist of illusions and ignorance.
It was bound to happen. When extrovert hunt for prosperity in terms of materialistic resources and comforts and their possession became the sole objective of life, why would one bother to understand the importance and utility of noble thinking, virtuous character, and altruistic sentiments? The generous attitude of benevolence, selfless cooperation and adoption of ethical conduct emanate from and expand with the support of spiritually evolved emotions. If one is not even aware of the importance of emotions and intrinsic tendencies in human life, why would he care for their refinement?
The mad rush of self-obsession, rat-race for possessions, power and blind progress driven by the ego and selfishness seen everywhere within and around us today reflect the bankruptcy of the human heart (emotional core) and sheer disregard of the inner self. This is the major cause of the ever- increasing agonies, fears and problems the world is facing despite the dazzling scientific advancement, technological development and enormous materialistic strength and wealth today. The grains of scientific research will serve the real purpose and will be beneficial in the true sense only if it opens its barriers and goes beyond “What and How?” to see “Why and What for?” – to encompass the search for the dignity of humanity and ultimate aim of human life. Revered thinkers and philosophers from different parts of the world have been expressing these views on scientific progress ever since its advent. Eminent talents like Leo Tolstoy and Theodore Roosevelt have commented that scientific quest revolves around “what is it?” of every thing, or “why something happens like the way it does in the physical world”. But it does not quite try to find “for what purpose the thing is existing?”, or “for what objective is something happening the way it is?”, etc. Tolstoy further writes at one place that the childhood of modern science has begun with the quest for “what and how?”; the stage of its maturity will be reached when it also begins answering “why and for what purpose?”.
The hidden depths of Nature and life can be plumbed by appropriate and meaningful research on “why and for what purpose?” This type of scientific research in the inner fields of consciousness force will mark the meeting point of science and spirituality. Plato has also observed that the completeness and ultimate progress of science lies in its entry into the spheres of spirituality. Why was this world created? Why the gamut of species of different creatures including human beings produced? Why is the perpetual cycle of Nature running the way it is? For what purpose is every component of the cosmos moving in its specific sphere and order? Who is governing this universal order? Where is the original cause of the manifestation of Nature and the genesis of this ever-expanding cosmic existence?
This basic quest of the existentialists is beyond the scope of the modern material sciences. Leaving aside these rather abstract puzzles, there still remains a plethora of questions concerning the origin, purpose and limitless expressions of human life and evolution of consciousness and the undeciphered layers of mental and emotional cores that are fundamental to the understanding of human life; but are not considered by the modern sciences.
Tolstoy expresses his heartiest appreciation for the constructive contributions of scientific developments to human civilization but he also deplores the near total neglect of moral aspects, value systems and deeper emotional effects, etc in the pursuit of scientific research. In his thorough review-essays in “Science is Not Enough”, the author scientist Vannevar Bush (1890-1974) writes that “the focus and scope of science has largely been confined to the analysis and synthesis of material substances and entities. It cannot claim absolute knowledge of anything with certainty. Its discovery of atom is an evidential example in this regard. It has still not been certain of the structure and functions of the subatomic units and their (further) sub-particulate constituents. Its continual research keeps annulling or deviating its own convictions and thus disapproving the sufficiency of its findings so far”. In the views of the thinkers like Theodore Roosevelt (1933 ) – “Science will be no better than a pool of artificial tools and techniques unless its search begins from metaphysical basis and incorporates the fields of consciousness”. Distinguished scientists like Warsen Beaver also opine that science will have to leave out its prejudices and adopt a broadened attitude for comprehensive research towards revealing the mysteries of Nature and resolving the problems of life. At present its approach is prejudiced in the sense that its search for truth is confined only to the perceivable realities of the world.
Dr. Beaver expresses his views on the reality of sublime consciousness as -” In the moments of deep sorrow, fear or helplessness, we do experience some inner inspiration that induces inexplicable hope and courage. It also gives us strength and light to counter the adversities or find discerning solutions to the acute hardships. This sublime power of inner consciousness is an expression of the Almighty. Each one of us does experience His presence in some form, some time in the course of life”. Science and spirituality have somehow been mutually contradicting in their approaches and have always regarded each other’s principles and objectives as superficial.
This negative competition has deprived both of their complementary roles towards holistic human growth. The convictions and practices of spirituality weaken their authenticity in absence of scientific spirit and openness. The philosophy and teachings of spirituality without having scientific approach lose their relevance and originality in the smog of blind faith and superstitions. Science also remains narrow and incomplete without incorporating spirituality, which is the base of enlightened evolution of the mental and emotional domains. Science without spirituality has no bonds of values and so there is an obvious danger of its becoming amoral and apathetic. This is what we are witnessing today. Science has undoubtedly made grand constructive contributions to the external development of human civilization, but it has unscrupulously invented dreaded products of mass destruction and global devastation. Its unchallenged might and reckless advancement appear to threaten the very existence of life on earth. It is high time the tyranny of this unbridled blind power is controlled and made accountable to humanity. The role of spirituality is self-evident in this regard. Science and technology can generate means of progress but not the means of peaceful co-existence and happiness; neither can these nurture moral values and inner strength. Science and technology may produce material wealth and prosperity but not the nectar of soothing emotions, spring of love and compassion or light of courage, wisdom and sagacity. Unless science is integrated with spirituality to fill-in this gap and both the complementary powers are encouraged to flourish within mutual cooperation, the present trends of progress would be inexorably hurtling towards the suicidal edge of global extinction.
Once a dacoit came to listen to a scholar- preacher’s sermon. The scholar was very eloquent about the virtues of forgiveness and non-violence. The sermon ended. The preacher took the offerings and walked towards his village. There was forest in-between. The dacoit bounced upon the preacher and asked for all the money he was carrying.
The preacher was a brave person and had a bamboo stick in his hands with which he threatened to hit the dacoit. The dacoit got scared and politely asked him that only a shot while ago he was preaching about the virtues of forgiveness and non-violence which he himself was not practicing. The scholar said that the sermon was for law abiding gentle people but for criminals like the dacoit the stick serves the sermon. Looking at the resolutely strong-willed scholar the dacoit took to his heels.

Advertisements
Standard
Mobile Technology

Android Vs iOS Vs Windows Phone 7 Vs Symbian ^3

There was a time when buying a smartphone was easy. You had a couple of platforms and a handful of models to choose from. Things have changed a lot today. You now have over half a dozen platforms out there with hundreds of different models between them, priced very close to each other. It doesn’t help matters when several phones are identical to each other but simply running a different brand of operating system.

You can decide what features you want in your phone but what about the operating system? There is no way you can choose between them looking at the spec sheet alone. Being in a position where we get to use all the latest smartphones on all the different platforms, we think we have answers to your operating system related questions.

What follows is a brief comparison of the top four smartphone platforms – iOS, Android, Windows Phone 7 and Symbian ^3 – where we try to find which one is the best, ultimately narrowing down your number of options while buying and helping you choose better.

Aesthetics

iOS is the oldest of the four platforms here. Even though it is four-and-a-half-years old now and has barely undergone any major UI makeover, it still looks great. The UI design has a sense of timelessness to it and no matter how many times you look at it it does not look boring. Apple has also designed it in a manner where it is out of your way most of the time so that you can concentrate on your applications. This means there are no unnecessary animations and transition effects and whatever little is there looks natural and is functional.

Android on the other hand has gone through considerable changes since its first iteration and has only got better with age. Having said that, over the years it has lost some of its simplicity and picked up some UI design elements that seem overdone, such as the 3D image gallery or the live wallpapers, which serve no functional value whatsoever and just consume resources for meaningless eye candy. This behavior is at odds with the usual Google way of designing things, where functionality takes precedents over attractiveness. Still, overall it is an attractive OS and although it lacks the timeless beauty of the iOS or the contemporary look of Windows Phone 7, it manages to look pretty good. Too bad you rarely get to see the real Android below the custom skins.

Symbian ^3 borrows the basic UI design of its predecessor and improves upon it. Despite that the end result is not something that one would call modern. You can see the roots of the operating systems, such as the soft keys at the bottom of the screen that were necessary for devices with buttons and a scroll bar for when there was no kinetic scrolling. It does not look bad per se, but it is not in the same league as others. Luckily, it is skinnable, so you can give a new look to it with a custom skin, although don’t expect to make a swan out of a goose.

The latest entrant into the world of smartphones, Windows Phone 7 took the world by surprise when it was first announced, partly because no one expected Microsoft to come up with something that was so fresh and modern. The beauty of the UI design on Windows Phone 7 is unlike anything that you have seen before on other smartphones.

Unlike other operating systems here, especially Android, which borrowed heavily from iOS initially for their UI design, Microsoft came up with something that was completely original and yet incredibly good looking. So good is the UI design that most people would be seduced into buying a Windows Phone 7 device based on the look itself.

Ease of use

Designing a good looking interface is one thing. Designing a good looking interface that is also easy to use is another and no one does this better than Apple. If you don’t believe us just search online for videos where kids are given an iPad or an iPhone and within minutes they manage to figure out the basics.

In our experience iOS has turned out to be the easiest mobile operating system, where everything was so clear and obvious that anyone who used it for the first time, regardless of age, could figure it out without having to refer to a manual. The reason for this is that it does not assume that the user knows how to use it and because of that you can go around doing basic things without any help. It is incredibly intuitive and makes you wonder why others haven’t figured out a way to make their software work this way. It feels as if it was designed with regular human beings in mind, not robots or geeks. We loved the keyboard especially.

Next in line of intuitiveness is Android. It does not have the same level of simplicity as iOS, were you can detach you brain and still manage to work the interface, but it is still very easy nonetheless. Unfortunately, you would rarely get to use stock Android on every phone you use, which means if you are someone who’s not a geek and are used to, say, an HTC Android phone, you will be lost when you pick up a Samsung Android phone.

So even though Google and the OEMs try to make the UI user friendly, the fact that there are so many different types of them is bound to leave a layperson confused.

Using the early versions of Symbian S60 5th Edition was as much fun as amputating your arm with a dull blade. The UI was designed for phones with keypads and Nokia had done little to ensure that it was usable, if not a pleasure. That’s not the case with Symbian ^3, however, which feels miles ahead in terms of usability.

Things now work the way they should and there is no longer a doubt in your mind whether clicking something will just highlight it or launch it. We still don’t like the way the applications are scattered across the menu and the on-screen keyboard could have been better. But overall the latest version of Symbian is pretty user friendly, and unlike Android, you don’t have to worry about different interface layouts on different devices.

Windows Phone 7 may look great but it isn’t the best when it comes to user friendliness. There are some things that aren’t immediately apparent, such as the way you have to press and hold on certain items to display additional options. Then there is also the quirky behavior of the search button or the tiny call/end keys and the need to unlock the screen before you can receive a call. But more than anything, it’s the lack of basic features such as multitasking and copy-paste for text that really makes things difficult for the users. We do love the keyboard though, which is on par with the keyboard on Gingerbread and almost as good as the one on iOS.

Features

Features was never a strong point of iOS, but over the years Apple has added a lot of functionality to the OS, such as the ability to install applications, multitasking, copy-paste, folders, etc. iOS today leaves very little room for complaint. However, there are some things that Apple is yet to take care of such as Bluetooth file transfers, file manager, mass storage, homescreen widgets and FM radio to name a few, but we have a feeling none of these will ever be addressed.

Fortunately, Apple does add additional functionality with every major firmware upgrade but more often than not these are limited to newer devices, whereas the older ones get the short end of the stick.

Android’s biggest advantage over iOS has been the features and with the latest release Android has almost every feature that you could want, whether it is multitasking, widgets, tethering, Wi-Fi hotspot or Adobe Flash support. It feels the most complete out of all the four platforms here in terms of features, and if features are all that you are looking for then you would be happiest with Android.

When it comes to features, Symbian ^3 is no slouch either. You will find almost every feature here that you get on Android, along with some that you don’t, such as FM radio and USB On-the-Go connectivity. You even get multiple homescreens (three, to be exact) and widgets for them, which are very handy. Features like multi-tasking and copy paste, something others have just discovered and others are yet to, have always been part of Symbian since the first iteration several years ago and have been executed perfectly. Symbian ^3 has most of the features that you would want and there wasn’t anything that we felt it should have that it didn’t.

This is one aspect where Windows Phone 7 fails miserably. For an operating system launching in 2010, Microsoft has left out some pretty major things. Although they are saying they will eventually incorporate most of them through updates we feel they should have had them from day one. While it was excusable to leave out on those things back in 2007, Microsoft has no such excuse, considering they were in the smartphone business even before Windows Phone 7. It does have some good features, such as the homescreen tiles, Xbox Live support, Zune pass and Office integration, but we don’t think that will be enough to compete against the rivals.

Performance

When iOS first came out, it wowed the world with its fluid interface that ran perfectly even on the modest hardware of the first generation iPhone. Over the years the OS has become heavier and the proof of this is the way the iPhone 3G struggles with iOS 4.0. But try the same OS on an iPhone 4 and you will notice a world of difference. The UI is silky smooth throughout with no noticeable sluggishness. Even when switching between multiple applications, the UI maintains its smoothness without faltering.

Something similar has been observed in case of Android. As long as you provide it with fast hardware, it runs fine but tends to choke on slower devices. However, unlike iOS, even when running on faster hardware, Android is never perfectly smooth. At times you will notice unexpected and inexplicable slowdowns while going through the UI, which deters from the overall experience. Google has also added unnecessary eye candy to the UI, which also tends to bog down devices with less than perfect hardware.

Also, Android does not use the GPU to render the on-screen images, which means the CPU is overburdened, causing further slowdowns. Still, with some optimization, Android can be made to work pretty well on slower devices.
One of the greatest strengths of Symbian is that it has always been a very light operating system that could be run even by weaker hardware. This is why all the Symbian phones have hardware that seem less impressive than what we are used to seeing on high-end devices, but that is absolutely fine as even on that hardware the OS runs perfectly well.

Since the OS is so light, it removes the need to unnecessarily jack up the hardware and burn more battery in the process. This is why Symbian phones have the best battery life among smartphones. Nokia has also made good use of the on-board GPU to render all the on-screen images, leaving the CPU free to handle other tasks.
When it comes to UI smoothness, Windows Phone 7 is unbeatable. That’s mostly because it is always sitting on powerful hardware, but also because the OS is well optimized for it. This is another good example of the kind of performance you get when you know what the weakest device your software would work on and then optimize it accordingly.

This is also why Android does not work well on low-end devices. The UI of Windows Phone 7 is so smooth, it gives you the illusion of moving physical objects around instead of UI elements, an illusion that Android fails to maintain, thanks to the occasional stutter. Unfortunately, the smoothness is only limited to the default applications as third-party applications could not live up to the same standards that Microsoft has set. We have seen Android developers come up with smoother applications even though they had no idea what phone their application would be running on. We hope things get better in future as these applications are updated.

Applications

This is one area where iOS pulls out a massive lead ahead of all the other platforms here. Being around the longest has certainly benefitted it and there are millions of applications available on the App Store right now waiting to be downloaded. Granted that more than half of them are not worth a second look but there are some really brilliant apps here. In fact, the general quality of applications available is the highest among all the smartphone platforms. Some of these apps have truly revolutionized the way we use our smartphones and in a way that not even Apple would have imagined when they made the iPhone. If apps are all you care about more than the device, then iOS is the platform to be on right now.

Although Android is fast catching up with iOS in terms of number of applications, we have failed to come across truly compelling apps that would sway us in favor of the Droid. Most of the great apps on Android are already available on iOS and the remaining ones are Google’s own apps. There are very few great apps or games that are exclusive to Android right now. Sure, things would change down the line and once everyone realizes that Android is the better platform to develop for, considering there are no strict restrictions to follow unlike on the App Store, people would eventually make a move towards Android.

With Android already outselling iPhones in the US soon everyone would want to develop for the OS with the most number of users. Right now though, things aren’t that great as such and if it’s apps you want you should be looking at iOS, not Android. Also, remember that even if tomorrow Android Market does get all the great applications that does not mean they will stop making them for iOS.

There was a time when people boasted about the number of applications that Symbian has. Although it does have one of the best libraries of applications available in terms of sheer numbers, a lack of application store meant it was difficult to have access to them. Now that Nokia has the Ovi Store, things are looking better. When we reviewed the N8 we remarked about the number of applications available for it.

Even though the platform was quite new, the store had decent number of apps available for it. Even now it is growing at a steady pace. But the thing about the Ovi Store is that it will just take care of the basics and you won’t be spoilt for choice as on iOS or Android. Want a Twitter client, there is Gravity. Want an IM app, use Nimbuzz. While this does make it easier to choose, at times you wish you had more apps from the same category to choose from.
Windows Phone 7 has the least impressive library of applications available for it and although one can blame this on the short period of time it has been out we must say the Windows Marketplace didn’t flood with great apps the way we expected it to be.

Just like Ovi, it has all the basic applications covered, but there is nothing here that isn’t available on the other platforms as of now. Also, the applications and especially games seemed unreasonably expensive on the Marketplace compared to App Store or Android Market. The same app as on these stores would cost two to three times more on the Marketplace for no reason.

Perhaps developers are seeing Windows Phone 7 as a premium platform, considering all the Windows Phone 7 devices are high-end and think they can get away with pricing their apps high (the same reason why Android developers either choose to go the ad-based way or through OEMs because they know Android buyers aren’t big spenders).

Verdict

You probably expected Symbian to be at the bottom of the chart when you started reading this article, but as surprising as it may be, it isn’t. That (dis)honor goes to Windows Phone 7, which has a long way to go before it can play with the big boys. Sure it has the potential to be great with a killer interface that would seduce people into buying this phone (and flame me in the comments section for writing bad about it). But right now there are few reasons to consider buying a Windows Phone 7 handset. Perhaps by the time you are ready to buy your next smartphone, it would be ready for you.

Symbian has gone through a lot of changes over the past years and it has never been in a better shape before. But we feel it has reached the end of its potential and it’s about time it hands over the torch to MeeGo, which will take over as the premium operating system on Nokia’s smartphones. While there is nothing bad about it, others just seem a generation ahead and although it still has the one of the best feature list around it’s not enough in today’s world. The fact the Ovi Store isn’t exactly brimming with great quality apps is also another reason why it lags behind.

iOS has had a long and successful journey and it still has a long way to go, but it seems too rigid in today’s world. The interface design is still top notch and Apple’s attention to detail is exemplary. However, you still miss some of those features, such as widgets for the homescreen or a notification system that does not annoy you. More than anything else, iOS’s biggest trump card is the App Store, which is undoubtedly the best in the business. But the fact that you can only enjoy this wonderful OS on two smartphones, both of which are high-end devices, does not bode well for those who don’t have ‘Ambani’ as their last name.

Android today is a completely different animal compared to what it was two years ago. It felt rudimentary, to say the least, and although it showed potential it was difficult to predict back then what it would be today. Google has worked hard on the OS and thanks to a steady stream of updates it has completely transformed into this new OS that can go head-to-head with the best of the business. It’s still far from perfect though and certain issues such as fragmentation would never be solved. But people have accepted them and found ways to make things work regardless of presence.

Today’s Android offers the best combination of features, performance and support from the developer community in terms of application and the fact that it can run on even a sub Rs. 7,000 handset proves that you don’t need big bucks to own a smartphone. And it’s because of all these qualities that it manages to narrowly nudge ahead of iOS, which has so far been the undisputed king of the smartphone segment. So our verdict is simple, if you don’t have the cash to spend on an iPhone 4, get an Android.

Standard
Mobile Technology

Is Android the Future of Mobile Computing?

Devices like Apple’s iPhone and the various versions of Blackberry smartphones are revolutionizing computing. Phones and phone-like devices are increasingly blurring the lines between notebook computers, netbooks and phones. The mobile computing revolution is on!

One platform, however, truly stands out as a potential game changer. That platform is the Android platform from Google. Is Android the future of mobile computing? There is certainly a strong potential for Android to shape the future of mobile computing.

Android’s strength comes from its openness. The Android SDK is open source and the license governing Android itself allows any handset manufacturer to use and modify it. This allows Android to shape the future of mobile computing by making it available to any hardware manufacturer that wants to use it. This means that Android is likely to be the OS of choice for future mobile computing hardware like tablet PCs or e-book readers.

Android’s openness also applies to the selection of mobile carrier. This is one area where many users have been unhappy with Apple’s iPhone. Android is widely available which means that most wireless carriers have an Android handset available. Customers want choice. By giving them choice, Android positions itself as the future of mobile computing.

Android’s greatest strength, however, is its development kit. In the history of computing, the platforms that supported the application developers best became the clear winners. Failure to support application developers with robust tools killed the really Apple platform and IBM’s OS2. This is a mistake that Apple seems to be willing to repeat with the iPhone. The iPhone development tools are difficult to use and the application approval process seems terribly subjective at times. This makes iPhone application development unprofitable for many developers. In contrast, the Android development tools use Java and even C/C++. This allows developers to write applications for Android using languages they already know and use. Additionally, it allows them to use the tools they are already using such as Eclipse. The Android SDK also provides a very robust emulator so that application developers can test their Android applications without relying on physical hardware to do so. The future of mobile computing will largely be determined by the availability of the applications that end users want and need. In this regard, Android is a clear winner.

The biggest danger to Android’s dominance over the future of mobile computing is fragmentation. The ability of hardware vendors to extend Android without contributing their changes back to the Android project could lead to various incompatible versions of Android. To some extent, this has already happened as developers have had to struggle some to make their applications to support different hardware capabilities. This fragmentation of Android would make it harder for application developers to write code for Android. Since the support of application developers is crucial to the success of any computing platform, fragmentation could be a serious threat to Android as the future of mobile computing.

Is Android the future of mobile computing? I think the answer is that it certainly could be. Android’s open nature makes it possible for hardware developers to use it for whatever new devices they can imagine. Its SDK makes it easy for application developers to create the applications users want and need. Both factors make Android a strong contender for the shape of the future of mobile computing. However, there is a danger that hardware vendors will customize Android to the extent that the platform becomes fragmented. If this happens, it will be harder for application developers to write for Android and this could endanger its lead position as the future of mobile computing.

Standard
Software Services, Supply Chain Management

The Management Components of SCM

The SCM components are the third element of the four-square circulation framework. The level of integration and management of a business process link is a function of the number and level, ranging from low to high, of components added to the link. Consequently, adding more management components or increasing the level of each component can increase the level of integration of the business process link. The literature on business process reengineering, buyer-supplier relationships and SCM suggests various possible components that must receive managerial attention when managing supply relationships. Lambert and Cooper identified the following components which are:

  1. Planning and control
  2. Work structure
  3. Organization structure
  4. Product flow facility structure
  5. Information flow facility structure
  6. Management methods
  7. Power and leadership structure
  8. Risk and reward structure
  9. Culture and attitude

However, a more careful examination of the existing literature will lead us to a more comprehensive structure of what should be the key critical supply chain components, the “branches” of the previous identified supply chain business processes, that is, what kind of relationship the components may have that are related with suppliers and customers accordingly. Bowersox and Closs states that the emphasis on cooperation represents the synergism leading to the highest level of joint achievement. A primary level channel participant is a business that is willing to participate in the inventory ownership responsibility or assume other aspects of financial risk, thus including primary level components.  A secondary level participant, is a business that participates in channel relationships by performing essential services for primary participants, thus including secondary level components, which are in support of primary participants. Third level channel participants and components that will support the primary level channel participants, and which are the fundamental branches of the secondary level components, may also be included.

Consequently, Lambert and Cooper’s framework of supply chain components does not lead us to the conclusion about what are the primary or secondary (specialized) level supply chain components. That is, what supply chain components should be viewed as primary or secondary, how these components should be structured in order to have a more comprehensive supply chain structure, and to examine the supply chain as an integrative one.

Baziotopoulos reviewed the literature to identify supply chain components. Based on this study, Baziotopoulos suggests the following supply chain components:

  1. For customer service management: Includes the primary level component of customer relationship management, and secondary level components such as benchmarking and order fulfillment.
  2. For product development and commercialization: Includes the primary level component of Product Data Management (PDM), and secondary level components such as market share, customer satisfaction, profit margins, and returns to stakeholders.
  3. For physical distribution, manufacturing support and procurement: Includes the primary level component of enterprise resource planning (ERP), with secondary level components such as warehouse management, material management, manufacturing planning, personnel management, and postponement (order management).
  4. For performance measurement: Includes the primary level component of logistics performance measurement, which is correlated with the information flow facility structure within the organization. Secondary level components may include four types of measurement such as: variation, direction, decision and policy measurements. More specifically, in accordance with these secondary level components, total cost analysis (TCA), customer profitability analysis (CPA), and asset management could be concerned as well.
  5. For outsourcing: Includes the primary level component of management methods, and the strategic objectives for particular initiatives in key areas of information technology, operations, manufacturing capabilities, and logistics (secondary level components).
Standard
Web 2.0

How Web 2.0 Technology Worsens the Problem

Unfortunately, the technologies that make Web 2.0 interactive are also responsible for the spread of more viruses and malware. The more multimedia the web experience becomes, the more familiar we all become with installing browser plug-ins and toolbars, drivers, widgets, and applets. “To view this content requires the latest version of Flash.” Or Shockwave, or any of the slew of other audio and video players out there. Using cool Web 2.0 applications like MMOGs often require you to install drivers and utilities. Many users are getting increasingly blasé about installing add-on applications—but we need to be more vigilant than ever about the source of such applications.

User-created content can pose risks to you, the site owner. It can also pose privacy and identity-theft risks to your users. Many shopping sites allow visitors to search for others’ wish lists by name or email address.

Unless sites take security precautions, scammers can bombard a wish-list search with known or manufactured email addresses, harvest a bunch of wish lists, and send personalized phishing scam emails promoting wished-for items.

Could your webcam be spying on you? In a blackmail scam, a man in Spain was arrested for unleashing a virus capable of taking over infected computers and cams to do just that.

It used to be (in the Web 1.0 world) that you were as safe as long as you didn’t launch any dubious executables or open any suspicious attachments.

But nowadays, malicious code can install itself in the background when you simply visit the wrong web page.

Here are a few Web 2.0 vulnerabilities:

  • Malware web pages.
  • Viruses spread among web-enabled cell phones.
  • Hacking wireless networks and Bluetooth conversations.

What to Do?

My best advice for marketers and businesspeople is to be aware that Web 2.0 is afflicted with many of the “Wild West” qualities of Web 1.0—and they’re fancier and more interactive than ever.

Internet security is unlikely to be the direct responsibility of readers of this book. Governments, security software and antivirus companies, spam filter technologies, and IT departments everywhere have been battling these kinds of threats for over a decade, and their white hat efforts will continue.

The credit card companies introduced a stringent Payment Card Industry Data Security Standard (PCI for short) that will make things tougher for hackers. The PCI standard mandates firewall and antivirus software, and regularly updated virus definitions. It requires companies to strongly encrypt data, to restrict which of your employees have access to customer credit card data, and to assign a unique identifying number to employees with that access. In addition, it governs monitoring of who views and downloads data, and periodic security system checks.

Security experts predict increasing attacks on Mac hardware, thanks largely to the spread of iPods and iPhones. For now, though, most of these ills principally afflict PCs running Microsoft operating systems and applications. But it is prudent to consider that any new foray into wireless devices, mobile, and PDA will face some novel cybercrime angles of their own.

Here are just a few priorities to bear in mind:

  • Comply with PCI standards.
  • Engage with leading security firms like VeriSign and HackerSafe to ensure your website, its server, and database are protected from known vulnerabilities.
  • If your website supports user-generated content, widgets, forums, etc., be certain that it accepts only text or very basic HTML—and refuses JavaScript and other executable code.
  • Ensure credit cards authorize and settle before shipping any products. Investigate all credit card fraud, including the referring URL.
  • Scrutinize how and where your affiliate partners appear. Carefully review their traffic, sales, and commissions. If sudden, large sales from a new partner seem too good to be true, they probably are.
  • If you distribute your text ads across a content network, review your stats for large traffic flows that didn’t result in any sales. It could be click-fraud designed to line the pocket of a site owner.
Standard
Software Services, Supply Chain Management

Supply Chain Business Process Integration

Successful SCM requires a change from managing individual functions to integrating activities into key supply chain processes. An example scenario: the purchasing department places orders as requirements become appropriate. Marketing, responding to customer demand, communicates with several distributors and retailers, and attempts to satisfy this demand. Shared information between supply chain partners can only be fully leveraged through process integration.

Supply chain business process integration involves collaborative work between buyers and suppliers, joint product development, common systems and shared information. According to Lambert and Cooper operating an integrated supply chain requires continuous information flows, which in turn assist to achieve the best product flows. However, in many companies, management has reached the conclusion that optimizing the product flows cannot be accomplished without implementing a process approach to the business. The key supply chain processes stated by Lambert are:

  • Customer relationship management
  • Customer service management
  • Demand management
  • Order fulfillment
  • Manufacturing flow management
  • Supplier relationship management
  • Product development and commercialization
  • Returns management

Other key critical supply business processes combining these processes stated by Lambert such as:

  1. Customer service management
  2. Procurement
  3. Product development and commercialization
  4. Manufacturing flow management/support
  5. Physical distribution
  6. Outsourcing/partnerships
  7. Performance measurement

1. Customer service management process:

Service Management is integrated into Supply Chain Management as the joint between the actual sales and the customer. The aim of high performance Service Management is to optimize the service-intensive supply chains, which are usually more complex than the typical finished-goods supply chain. Most service-intensive supply chains require larger inventories and tighter integration with field service and third parties. They also must accommodate inconsistent and uncertain demand by establishing more advanced information and product flows. Moreover, all processes must be coordinated across numerous service locations with large numbers of parts and multiple levels in the supply chain.

Customer Relationship Management concerns the relationship between the organization and its customers.Customer service provides the source of customer information. It also provides the customer with real-time information on promising dates and product availability through interfaces with the company’s production and distribution operations. Successful organizations use following steps to build customer relationships:

  • Determine mutually satisfying goals between organization and customers
  • Establish and maintain customer rapport
  • Produce positive feelings in the organization and the customers

2. Procurement process:

Strategic plans are developed with suppliers to support the manufacturing flow management process and development of new products. In firms where operations extend globally, sourcing should be managed on a global basis. The desired outcome is a win-win relationship, where both parties benefit, and reduction times in the design cycle and product development are achieved. Also, the purchasing function develops rapid communication systems, such as electronic data interchange (EDI) and Internet linkages to transfer possible requirements more rapidly. Activities related to obtaining products and materials from outside suppliers requires performing resource planning, supply sourcing, negotiation, order placement, inbound transportation, storage, handling and quality assurance, many of which include the responsibility to coordinate with suppliers in scheduling, supply continuity, hedging, and research into new sources or programmes.

3. Product development and commercialization:

Here, customers and suppliers must be united into the product development process, thus to reduce time to market. As product life cycles shorten, the appropriate products must be developed and successfully launched in ever shorter time-schedules to remain competitive. According to Lambert and Cooper, managers of the product development and commercialization process must:

  • Coordinate with customer relationship management to identify customer-articulated needs;
  • Select materials and suppliers in conjunction with procurement, and
  • Develop production technology in manufacturing flow to manufacture and integrate into the best supply chain flow for the product/market combination.

 

4. Manufacturing flow management process

The manufacturing process is produced and supplies products to the distribution channels based on past forecasts. Manufacturing processes must be flexible to respond to market changes, and must accommodate mass customization. Orders are processes operating on a just-in-time (JIT) basis in minimum lot sizes. Also, changes in the manufacturing flow process lead to shorter cycle times, meaning improved responsiveness and efficiency of demand to customers. Activities related to planning, scheduling and supporting manufacturing operations, such as work-in-process storage, handling, transportation, and time phasing of components, inventory at manufacturing sites and maximum flexibility in the coordination of geographic and final assemblies postponement of physical distribution operations.

5. Physical distribution

This concerns movement of a finished product/service to customers. In physical distribution, the customer is the final destination of a marketing channel, and the availability of the product/service is a vital part of each channel participant’s marketing effort. It is also through the physical distribution process that the time and space of customer service become an integral part of marketing, thus it links a marketing channel with its customers (e.g. links manufacturers, wholesalers, retailers).

6. Outsourcing/partnerships

This is not just outsourcing the procurement of materials and components, but also outsourcing of services that traditionally have been provided in-house. The logic of this trend is that the company will increasingly focus on those activities in the value chain where it has a distinctive advantage and everything else it will outsource. This movement has been particularly evident in logistics where the provision of transport, warehousing and inventory control is increasingly subcontracted to specialists or logistics partners. Also, to manage and control this network of partners and suppliers requires a blend of both central and local involvement. Hence, strategic decisions need to be taken centrally with the monitoring and control of supplier performance and day-to-day liaison with logistics partners being best managed at a local level.

7. Performance measurement

Experts found a strong relationship from the largest arcs of supplier and customer integration to market share and profitability. By taking advantage of supplier capabilities and emphasizing a long-term supply chain perspective in customer relationships can be both correlated with firm performance. As logistics competency becomes a more critical factor in creating and maintaining competitive advantage, logistics measurement becomes increasingly important because the difference between profitable and unprofitable operations becomes more narrow. A.T. Kearney Consultants noted that firms engaging in comprehensive performance measurement realized improvements in overall productivity. According to experts internal measures are generally collected and analyzed by the firm including

  • Cost
  • Customer Service
  • Productivity measures
  • Asset measurement, and
  • Quality

External performance measurement is examined through customer perception measures and “best practice” benchmarking, and includes

  • Customer perception measurement, and
  • Best practice benchmarking
Standard
Software Services, Supply Chain Management

Supply Chain Management

 
Supply Chain Management (SCM) is the process of planning, implementing and controlling the operations of the supply chain as efficiently as possible. Supply Chain Management spans all movement and storage of raw materials, work-in-process inventory, and finished goods from point-of-origin to point-of-consumption.

Supply Chain Management encompasses the planning and management of all activities involved in sourcing, procurement, conversion, and logistics management activities. Importantly, it also includes coordination and collaboration with channel partners, which can be suppliers, intermediaries, third-party service providers, and customers. In essence, Supply Chain Management integrates supply and demand management within and across companies. More recently, the loosely coupled, self-organizing network of businesses that cooperates to provide product and service offerings has been called the Extended Enterprise.

Some experts distinguish Supply Chain Management and logistics, while others consider the terms to be interchangeable. Supply Chain Management can also refer to Supply chain management software which are tools or modules used in executing supply chain transactions, managing supplier relationships and controlling associated business processes. Supply chain event management (abbreviated as SCEM) is a consideration of all possible occurring events and factors that can cause a disruption in a supply chain. With SCEM possible scenarios can be created and solutions can be planned.

A supply chain is a network of facilities and distribution options that performs the functions of procurement of materials, transformation of these materials into intermediate and finished products, and the distribution of these finished products to customers. Supply chains exist in both service and manufacturing organizations, although the complexity of the chain may vary greatly from industry to industry and firm to firm.

Supply chain management is typically viewed to lie between fully vertically integrated firms, where the entire material flow is owned by a single firm and those where each channel member operates independently. Therefore coordination between the various players in the chain is key in its effective management. Cooper and Ellram compare supply chain management to a well-balanced and well-practiced relay team. Such a team is more competitive when each player knows how to be positioned for the hand-off. The relationships are the strongest between players who directly pass the baton, but the entire team needs to make a coordinated effort to win the race.

SUPPLY CHAIN MANAGEMENT PROBLEM

Supply chain management must address the following problems:

  • Distribution Network Configuration: Number, location and network missions of suppliers, production facilities, distribution centers, warehouses, cross-docks and customers.
  • Distribution Strategy: Including questions of operating control (centralized, decentralized or shared); delivery scheme (e.g., direct shipment, pool point shipping, Cross docking, DSD (direct store delivery), closed loop shipping); mode of transportation (e.g., motor carrier, including truckload, LTL, parcel; railroad; intermodal, including TOFC and COFC; ocean freight; airfreight); replenishment strategy (e.g., pull, push or hybrid); and transportation control (e.g., owner-operated, private carrier, common carrier, contract carrier, or 3PL).
  • Information: Integration of and other processes through the supply chain to share valuable information, including demand signals, forecasts, inventory, transportation, and potential collaboration etc.
  • Inventory Management: Quantity and location of inventory including raw materials, work-in-process and finished goods.
  • Cash-Flow: Arranging the payment terms and the methodologies for exchanging funds across entities within the supply chain.
  • Supply chain execution is managing and coordinating the movement of materials, information and funds across the supply chain. The flow is bi-directional.

 ACTIVITIES/FUNCTIONS

Supply chain management is a cross-functional approach to managing the movement of raw materials into an organization, certain aspects of the internal processing of materials into finished goods, and then the movement of finished goods out of the organization toward the end-consumer. As organizations strive to focus on core competencies and becoming more flexible, they have reduced their ownership of raw materials sources and distribution channels. These functions are increasingly being outsourced to other entities that can perform the activities better or more cost effectively. The effect is to increase the number of organizations involved in satisfying customer demand, while reducing management control of daily logistics operations. Less control and more supply chain partners led to the creation of supply chain management concepts. The purpose of supply chain management is to improve trust and collaboration among supply chain partners, thus improving inventory visibility and improving inventory velocity.

Several models have been proposed for understanding the activities required to manage material movements across organizational and functional boundaries. SCOR is a supply chain management model promoted by the Supply Chain Management Council. Another model is the SCM Model proposed by the Global Supply Chain Forum (GSCF). Supply chain activities can be grouped into strategic, tactical, and operational levels of activities.

Strategic:

  • Strategic network optimization, including the number, location, and size of warehouses, distribution centers and facilities.
  • Strategic partnership with suppliers, distributors, and customers, creating communication channels for critical information and operational improvements such as cross docking, direct shipping, and third-party logistics.
  • Product design coordination, so that new and existing products can be optimally integrated into the supply chain, load management
  • Information Technology infrastructure, to support supply chain operations.
  • Where-to-make and what-to-make-or-buy decisions
  • Aligning overall organizational strategy with supply strategy.

 Tactical:

  • Sourcing contracts and other purchasing decisions.
  • Production decisions, including contracting, locations, scheduling, and planning process definition.
  • Inventory decisions, including quantity, location, and quality of inventory.
  • Transportation strategy, including frequency, routes, and contracting.
  • Benchmarking of all operations against competitors and implementation of best practices throughout the enterprise.
  • Milestone payments

 Operational:

  • Daily production and distribution planning, including all nodes in the supply chain.
  • Production scheduling for each manufacturing facility in the supply chain (minute by minute).
  • Demand planning and forecasting, coordinating the demand forecast of all customers and sharing the forecast with all suppliers.
  • Sourcing planning, including current inventory and forecast demand, in collaboration with all suppliers.
  • Inbound operations, including transportation from suppliers and receiving inventory.
  • Production operations, including the consumption of materials and flow of finished goods.
  • Outbound operations, including all fulfillment activities and transportation to customers.
  • Order promising, accounting for all constraints in the supply chain, including all suppliers, manufacturing facilities, distribution centers, and other customers.
Standard